We provide new (parameterized) computational hardness results for Interval Scheduling on Unrelated Machines. It is a classical scheduling problem motivated from just-in-time or lean manufacturing, where the goal is to complete jobs exactly at their deadline. We are given $n$ jobs and $m$ machines. Each job has a deadline, a weight, and a processing time that may be different on each machine. The goal is find a schedule that maximized the total weight of jobs completed exactly at their deadline. Note that this uniquely defines a processing time interval for each job on each machine. Interval Scheduling on Unrelated Machines is closely related to coloring interval graphs and has been thoroughly studied for several decades. However, as pointed out by Mnich and van Bevern [Computers \& Operations Research, 2018], the parameterized complexity for the number $m$ of machines as a parameter remained open. We resolve this by showing that Interval Scheduling on Unrelated Machines is W[1]-hard when parameterized by the number $m$ of machines. To this end, we prove W[1]-hardness with respect to $m$ of the special case where we have parallel machines with eligible machine sets for jobs. This answers Open Problem 8 of Mnich and van Bevern's list of 15 open problems in the parameterized complexity of scheduling [Computers \& Operations Research, 2018]. Furthermore, we resolve the computational complexity status of the unweighted version of Interval Scheduling on Unrelated Machines by proving that it is NP-complete. This answers an open question by Sung and Vlach [Journal of Scheduling, 2005].
翻译:我们为不相关机器的跨时间排程提供了新的(参数化)计算硬度计算结果。 这是一个典型的时间安排问题, 其动因是时空或精瘦制造, 目标是在最后期限前完成工作。 我们得到的是美元的工作和美元机器。 每个工作都有最后期限、 重量和处理时间, 每个机器的参数可能不同。 目标是找到一个时间表, 使完成的工作的总重量在最后期限前最大化。 请注意, 这个独特的程序定义了每台机器的处理时间间隔。 与不相关机器的跨时间排程与彩色间隔图密切相关, 并且已经对此进行了数十年的彻底研究。 然而, 正如 Mnich 和 van Schevern [Computers 2018] 所指出的, 每个工作都有一个期限、 重量和处理时间差异的参数。 目标在于显示, 在不相关机器的跨时间框架上, 当由机器的金额来比较时, Inval Sturling 答案是W[1] 硬度。 为此, 我们证明了2005年的不透明时间性计算 Ral Ral Ral 的 Ral 的 Ral Ral 问题在IM 上, IM IM 的运行 问题在2005 IM 的透明运行中, 的正确运行中, 问题在2005年的不透明 问题中, 问题在15 Ral Ral 问题中, IM 问题解 问题在 问题在18 Ral 问题中, 问题中, 问题在18 问题中, 的透明 问题在18 问题在18 问题中, 问题在18 问题中, 我们 问题在2005年的 。