We study computer systems with transactions executed on a set of shared objects. Transactions arrive continually subjects to constrains that are framed as an adversarial model and impose limits on the average rate of transaction generation and the number of objects that transactions use. We show that no deterministic distributed scheduler in the queue-free model of transaction autonomy can provide stability for any positive rate of transaction generation. Let a system consist of $m$ shared objects and an adversary be constrained such that each transaction may access at most $k$ shared objects. We prove that no scheduler can be stable if a generation rate is greater than $\max\bigl\{\frac{2}{k+1},\frac{2}{\lfloor \sqrt{2m} \rfloor}\bigr\}$. We develop a centralized scheduler that is stable if a transaction generation rate is at most $\max\bigl\{\frac{1}{4k}, \frac{1}{4\lceil\sqrt{m}\rceil} \bigr\}$. We design a distributed scheduler in the queue-based model of transaction autonomy, in which a transaction is assigned to an individual processor, that guarantees stability if the rate of transaction generation is less than $\max\bigl\{ \frac{1}{6k},\frac{1}{6\lceil\sqrt{m}\rceil}\bigr\}$. For each of the schedulers we give upper bounds on the queue size and transaction latency in the range of rates of transaction generation for which the scheduler is stable.
翻译:我们研究在共享对象组中执行交易的计算机系统。 交易持续到达约束对象, 约束以对抗模式的形式设置, 对交易生成的平均率和交易使用的对象数量施加限制。 我们显示, 在无队列的交易自主模式中, 没有确定分布调度器能够为任何正率的交易生成提供稳定性。 系统由 $m$ 共享对象组成, 对手会受到限制, 这样每个交易都可能访问最多 $k$ 的共享对象 。 我们证明, 如果生成率大于 $max\ bigl ⁇ c{ 2 ⁇ k+1},\ frac{ 2\ llod 底线{ sqrt{ 2m} 和交易使用的对象数量。 我们开发了一个集中调度器, 如果交易生成率最多为 $max\ bigl { { {1} {\\\\\\\\\ 4k}, 交易最多可以访问 rac\\\\\\\\\\\\\ r\ lic\ r\ c 交易的排序, 交易中, 交易的每个交易的配置表程是稳定的, 交易的排序比 交易的排序速度是稳定的。