Cloud service providers heavily colocate high-priority, latency-sensitive (LS), and low-priority, best-effort (BE) DNN inference services on the same GPU to improve resource utilization in data centers. Among the critical shared GPU resources, there has been very limited analysis on the dynamic allocation of compute units and VRAM bandwidth, mainly for two reasons: (1) The native GPU resource management solutions are either hardware-specific, or unable to dynamically allocate resources to different tenants, or both; (2) NVIDIA doesn't expose interfaces for VRAM bandwidth allocation, and the software stack and VRAM channel architectures are black-box, both of which limit the software-level resource management. These drive prior work to design either conservative sharing policies detrimental to throughput, or static resource partitioning only applicable to a few GPU models. To bridge this gap, this paper proposes SGDRC, a fully software-defined dynamic VRAM bandwidth and compute unit management solution for concurrent DNN inference services. SGDRC aims at guaranteeing service quality, maximizing the overall throughput, and providing general applicability to NVIDIA GPUs. SGDRC first reveals a general VRAM channel hash mapping architecture of NVIDIA GPUs through comprehensive reverse engineering and eliminates VRAM channel conflicts using software-level cache coloring. SGDRC applies bimodal tensors and tidal SM masking to dynamically allocate VRAM bandwidth and compute units, and guides the allocation of resources based on offline profiling. We evaluate 11 mainstream DNNs with real-world workloads on two NVIDIA GPUs. The results show that compared with the state-of-the-art GPU sharing solutions, SGDRC achieves the highest SLO attainment rates (99.0% on average), and improves overall throughput by up to 1.47x and BE job throughput by up to 2.36x.


翻译:暂无翻译

0
下载
关闭预览

相关内容

NVIDIA(全称NVIDIA Corporation,NASDAQ:NVDA,发音:IPA:/ɛnvɪdɪə/,台湾官方中文名为輝達),创立于1993年4月,是一家以设计显示芯片和芯片组为主的半导体公司。NVIDIA亦会设计游戏机核心,例如Xbox和PlayStation 3。NVIDIA最出名的产品线是为个人与游戏玩家所设计的GeForce系列,为专业工作站而设计的Quadro系列,以及为服务器和高效运算而设计的Tesla系列。 NVIDIA的总部设在美国加利福尼亚州的圣克拉拉。是一家无晶圆(Fabless)IC半导体设计公司。"NVIDIA"的读音与英文"video"相似,亦与西班牙文evidia(英文"envy")相似。现任总裁为黄仁勋。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
33+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员