Many economic and scientific problems involve the analysis of high-dimensional functional time series, where the number of functional variables ($p$) diverges as the number of serially dependent observations ($n$) increases. In this paper, we present a novel functional factor model for high-dimensional functional time series that maintains and makes use of the functional and dynamic structure to achieve great dimension reduction and find the latent factor structure. To estimate the number of functional factors and the factor loadings, we propose a fully functional estimation procedure based on an eigenanalysis for a nonnegative definite matrix. Our proposal involves a weight matrix to improve the estimation efficiency and tackle the issue of heterogeneity, the rationality of which is illustrated by formulating the estimation from a novel regression perspective. Asymptotic properties of the proposed method are studied when $p$ diverges at some polynomial rate as $n$ increases. To provide a parsimonious model and enhance interpretability for near-zero factor loadings, we impose sparsity assumptions on the factor loading space and then develop a regularized estimation procedure with theoretical guarantees when $p$ grows exponentially fast relative to $n.$ Finally, we demonstrate that our proposed estimators significantly outperform the competing methods through both simulations and applications to a U.K. temperature dataset and a Japanese mortality dataset.
翻译:许多经济和科学问题涉及对高维功能时间序列的分析,其中功能变量的数量(p$)随着序列依赖观测数量的增加而不同,功能变量的数量(p$)随着连续依赖观测数量的增加而不同。在本文件中,我们为高维功能时间序列提出了一个新的功能要素模型,保持并使用功能和动态结构,以大幅度降低维度并找到潜在因子结构。为了估计功能要素和因素负荷的数量,我们提议了一个完全功能性的估计程序,以非否定性明确矩阵的精密分析为基础。我们的提议涉及一个加权矩阵,以提高估算效率和解决异质性问题,而这种差异的合理性是通过从新的回归角度进行估算来说明的。在以美元增价计算某种多元率的美元差异时,将研究拟议方法的隐性特性。为了提供一个令人厌恶的模型,并提高近零因子负荷的可解释性,我们对装载空间要素的假设施加了紧张性假设,然后制定一种定期估计程序,在美元指数快速增长至美元的情况下,将理论保证与美元比较,然后通过新的回归度应用方法来说明其合理性。最后,我们将研究拟议方法通过模拟数据显示我们提出的一种模拟方法。我们提出的一种模拟方法,然后通过一种经过一个模拟模型显示我们提出的数据。