We formulate the non-Abelian Berry connection (tensor $\mathbb R$) and phase (matrix $\boldsymbol \Gamma$) for a multiband system and apply them to semiconductor holes under the coexistence of Rashba and Dresselhaus spin-orbit interactions. For this purpose, we focus on the heavy-mass holes confined in a SiGe two-dimensional quantum well, whose electronic structure and spin texture are explored by the extended $\boldsymbol{k}\cdot\boldsymbol{p}$ approach. The strong intersubband interaction in the valence band causes quasi-degenerate points except for point $\Gamma$ of the Brillouin zone center. These points work as the singularity and change the Abelian Berry phase by the quantization of $\pi$ under the adiabatic process. To explore the influence by the non-adiabatic process, we perform the contour integral of $\mathbb R$ faithfully along the equi-energy surface by combining the time-dependent Schr\"{o}dinger equation with the semi-classical equation-of-motion for cyclotron motion and then calculate the energy dependence of $\boldsymbol \Gamma$ computationally. In addition to the function as a Dirac-like singularity, the quasi-degenerate point functions in enhancing the intersubband transition via the non-adiabatic process. Consequently, the off-diagonal components generate both in $\mathbb R$ and $\boldsymbol \Gamma$, and the simple $\pi$-quantization found in the Abelian Berry phase is violated. More interestingly, these off-diagonal terms cause "resonant repulsion" at the quasi-degenerate energy and result in the discontinuity in the energy profile of $\boldsymbol \Gamma$.


翻译:我们为多波段系统开发非Abelian Berry 连接 (tensor $\ mathbbb R$) 和 相级 (matrix $\ boldsymbol\ gamma$), 并将其应用到Rashba 和 Dreselhaus 旋转轨道互动共存下的半导体洞。 为此, 我们关注SiGe 二维量井中封闭的重质洞, 其电子结构和旋转质素通过扩展的 $\ boldsybol{k ⁇ cdot\ boldsymol{p} 方法来探索。 双双双双双双双双双双双双双双双双双双平流的双平流( 直流) 平流( 平流) 直流( 平流) 平流) 的能量因子因子( 直流- 直流) 和直流( 直流) 直流( 平流) 直流) 直流( 平流) 直流( 平流) 直流) 直流( 直流) 直流(直流) 平流) 直流( 直流) 直流) 电) 的能量(直流(直流) 直流) 直流) 的能量(直流) 直流) 的能量(直流) 的能量(直流) 直流) 的能量(直流(直流) 直流) 直流) 的能量(直流) 根) 机) 的能量(直流) 根) 根) 根) 的能量(直流(直流(直流) 根) 根) 根) 的能量(直流) ) 根) ) ) 根) 机(直流(直流) ) ) ) (直流) (直流) (直流) (直流) (直流) (直流(直流(直流) ) (直流) ) ) (直流) (直流) (直流) (直流) (直流) (直流) (直流) (直流) (直流)

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员