We study random-turn resource-allocation games. In the Trail of Lost Pennies, a counter moves on $\mathbb{Z}$. At each turn, Maxine stakes $a \in [0,\infty)$ and Mina $b \in [0,\infty)$. The counter $X$ then moves adjacently, to the right with probability $\tfrac{a}{a+b}$. If $X_i \to -\infty$ in this infinte-turn game, Mina receives one unit, and Maxine zero; if $X_i \to \infty$, then these receipts are zero and $x$. Thus the net receipt to a given player is $-A+B$, where $A$ is the sum of her stakes, and $B$ is her terminal receipt. The game was inspired by unbiased tug-of-war in~[PSSW] from 2009 but in fact closely resembles the original version of tug-of-war, introduced [HarrisVickers87] in the economics literature in 1987. We show that the game has surprising features. For a natural class of strategies, Nash equilibria exist precisely when $x$ lies in $[\lambda,\lambda^{-1}]$, for a certain $\lambda \in (0,1)$. We indicate that $\lambda$ is remarkably close to one, proving that $\lambda \leq 0.999904$ and presenting clear numerical evidence that $\lambda \geq 1 - 10^{-4}$. For each $x \in [\lambda,\lambda^{-1}]$, we find countably many Nash equilibria. Each is roughly characterized by an integral {\em battlefield} index: when the counter is nearby, both players stake intensely, with rapid but asymmetric decay in stakes as it moves away. Our results advance premises [HarrisVickers87,Konrad12] for fund management and the incentive-outcome relation that plausibly hold for many player-funded stake-governed games. Alongside a companion treatment [HP22] of games with allocated budgets, we thus offer a detailed mathematical treatment of an illustrative class of tug-of-war games. We also review the separate developments of tug-of-war in economics and mathematics in the hope that mathematicians direct further attention to tug-of-war in its original resource-allocation guise.
翻译:本文研究随机分配资源的游戏。在追寻失落的便士游戏中,一个计数器在整数域 $\mathbb{Z}$ 上移动。每一轮中,Maxine 押注 $a\in [0,\infty)$,Mina 押注 $b\in [0,\infty)$。计数器 $X$ 根据概率 $\tfrac{a}{a+b}$ 向右移动。如果 $X_i$ 无限接近 $-\infty$,那么 Mina 得到一枚硬币,Maxine 得到零枚。如果 $X_i$ 无限接近 $\infty$,那么两个玩家的得分都是零或 $x$。因此,给定玩家的净回报为 $-A + B$,其中 $A$ 是她的押注金额之和,$B$ 是她的终点得分。该游戏的灵感来源于 2009 年 PSSW 中的无偏博奕,但事实上与 1987 年经济学文献中引入的 tug-of-war 十分相似。我们发现了该游戏的一些奇异特征。对于一类自然策略,当且仅当 $x$ 位于 $[\lambda,\lambda^{-1}]$ 中时,Nash 平衡点存在。其中 $\lambda \in (0,1)$ 是一个特定的常数。我们证明了 $\lambda$ 接近于 $1$,并证明 $\lambda \leq 0.999904$,同时提供了清晰的数值证明 $\lambda \geq 1 - 10^{-4}$。对于 $[\lambda,\lambda^{-1}]$ 中的每个 $x$,我们找到了可数个 Nash 平衡点。每个 Nash 平衡点大致可用一个整数的“战场指数”来描述:当计数器靠近时,两个玩家都会进行紧张的押注,远离时押注的速度会快但是不对称。我们的研究拓展了针对众多玩家提供资助的赌博博弈的一些基本前提(见文献 HarrisVickers87 和 Konrad12)。随着配套论文(HP22)对分配预算的博弈的研究,我们提供了有关 tug-of-war 博弈的详细的数学处理,这是一个具有代表性的博弈类别。我们还回顾了经济学和数学领域中 tug-of-war 的独立发展,希望数学家们能够对最初形式的资源分配的 tug-of-war 进行更深入的研究。