项目名称: SIS结构光电器件的光子辅助量子隧穿效应的研究

项目编号: No.61274067

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 马忠权

作者单位: 上海大学

项目金额: 80万元

中文摘要: 本课题的核心是研究具有特殊结构半导体异质结器件的载流子隧穿机理问题。旨在从电荷转移理论、先进功能薄膜材料制备-表征实验和器件工艺技术三个方面,探索和研究掺铝氧化锌薄膜(AZO)的半导体性质,石墨烯氧化物(GO)/SiO2过渡层的电子结构,金属-ZnO欧姆接触,以及AZO/GO/SiO2/Si光电器件的量子(载流子)隧穿机理和有效力场等动力学问题,探索新材料的引入对改善器件光电转换性能、增强光电转换效率和器件稳定性能的作用。研究低温(<150K)下的量子隧穿现象和光子作用下的量子隧穿增强效应的本质。本课题将采用恰当的动力学模型,计算电子-空穴穿越异质结势垒的概率流密度,分析界面区域和点缺陷高浓度区域的量子平均自由程,少子寿命和界面态密度等因素对器件光电导参数分布的影响,设计具有针对性的实验方法,提出实验上和理论上的解决方案,优化SIS 结构,为光电器件的新原理、新技术探索提供理论和实验依据

中文关键词: 光伏器件;准SIS结构;量子隧穿;界面钝化;选择接触

英文摘要: The main points of this proposal is to explore the mechanism of the carrier tunneling in the opto-electronic heterojunction device which is irradiated by natural light.Basing on the routine of the charge transfer theory,the fabrication and characterization of advanced optoelectronic films and device physics, the property of AZO film, the structure of graphene oxide(GO)/SiO2 buffer layers, the Ohmic contacts of metals and ZnO, and the carrier tunneling, build-in field and the effective force of AZO/GO/SiO2/Si optoelectronic device have been investigated. The likely enhancement of the stability and the conversion efficiency by introducing GO layer into original SIS device leading to the improvement of opto-electric conversion will be studied in an extensive methodology. The essence of photon-assisted highlight of quantum tunneling at low temperature (<150 K) will be characterized with a specific I-V or C-V measurements. The electronic states at surface and interface of intermediate region for the physical device will be analyzed through the effecitive spectroscopies. The high density of the point defects from the lattice mismatch, dislocation and adatom within the region resulting in the recombination, the reduction of average free path and minority lifetime of carrier will be investigated. The tentative

英文关键词: Photovoltaic device;quasi-SIS structure;quantum tunneling;interface passivation;selective contact

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
21+阅读 · 2020年9月14日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关VIP内容
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
21+阅读 · 2020年9月14日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员