This paper presents a novel 3D object detection framework that processes LiDAR data directly on its native representation: range images. Benefiting from the compactness of range images, 2D convolutions can efficiently process dense LiDAR data of a scene. To overcome scale sensitivity in this perspective view, a novel range-conditioned dilation (RCD) layer is proposed to dynamically adjust a continuous dilation rate as a function of the measured range. Furthermore, localized soft range gating combined with a 3D box-refinement stage improves robustness in occluded areas, and produces overall more accurate bounding box predictions. On the public large-scale Waymo Open Dataset, our method sets a new baseline for range-based 3D detection, outperforming multiview and voxel-based methods over all ranges with unparalleled performance at long range detection.
翻译:本文展示了一个新型的 3D 对象探测框架, 直接以本地表示方式处理 LIDAR 数据 : 范围图像 。 受益于范围图像的紧凑性, 2D 演进能够有效处理现场的密度 LiDAR 数据 。 为了克服这一视角的尺度敏感性, 提议了一个新的 范围条件比照( RCD) 层, 以动态方式调整一个连续的乘以测距的乘以。 此外, 本地软范围加固加上 3D 箱补装级, 提高了隐蔽区域的稳健性, 并产生了整体上更准确的捆绑框预测 。 在公共大型 Waymo Open D 数据集上, 我们的方法为基于范围3D 的探测、 超演化多视图 和 oxel 方法设定了新的基线, 在所有范围上, 且在远程探测时具有前所未有的性能 。