Large-scale text-to-image diffusion models have made amazing advances. However, the status quo is to use text input alone, which can impede controllability. In this work, we propose GLIGEN, Grounded-Language-to-Image Generation, a novel approach that builds upon and extends the functionality of existing pre-trained text-to-image diffusion models by enabling them to also be conditioned on grounding inputs. To preserve the vast concept knowledge of the pre-trained model, we freeze all of its weights and inject the grounding information into new trainable layers via a gated mechanism. Our model achieves open-world grounded text2img generation with caption and bounding box condition inputs, and the grounding ability generalizes well to novel spatial configurations and concepts. GLIGEN's zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin.


翻译:大规模的文本到图像扩散模型取得了惊人的进展。然而,现状是仅使用文本输入,这可能会影响可控性。在这项工作中,我们提出了GLIGEN,基于语言和 grounding 输入的图像生成的新方法。该方法依托和扩展了现有的预训练文本到图像扩散模型的功能,使其能够同时受到 grounding 输入的限制。为了保留预训练模型的广泛概念知识,我们冻结了其所有权重,并通过门控机制将 grounding 信息注入到新的可训练层中。我们的模型实现了基于标题和边界框条件输入的开放式 grounded 文本到图像生成,并且 grounding 能力在新的空间配置和概念上具有良好的泛化性。GLIGEN 在 COCO 和 LVIS 上的零样本性能超过了现有的基于监督的布局到图像基线。

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
30+阅读 · 2022年3月12日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
论文浅尝 | 弱监督下极简的视觉语言预训练模型
开放知识图谱
1+阅读 · 2022年9月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
15+阅读 · 2021年7月14日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员