For parabolic stochastic partial differential equations (SPDEs), we show that the numerical methods, including the spatial spectral Galerkin method and further the full discretization via the temporal accelerated exponential Euler method, satisfy the uniform sample path large deviations. Combining the exponential tail estimate of invariant measures, we establish the large deviations principles (LDPs) of invariant measures of these numerical methods. Based on the error estimate between the rate function of the considered numerical methods and that of the original equation, we prove that these numerical methods can weakly asymptotically preserve the LDPs of sample paths and invariant measures of the original equation. This work provides an approach to proving the weakly asymptotical preservation for the above two LDPs for SPDEs with small noise via numerical methods, by means of the minimization sequences.


翻译:对于抛物线随机偏差部分方程(SPDEs),我们表明,数字方法,包括空间光谱加列尔金方法和通过时间加速指数极速法推进完全离散的方法,满足了统一样本路径的较大偏差。结合了这些数值方法的指数尾数估计,我们确定了这些数值方法的不变化度度量的巨大偏差原则(LDPs)。根据所考虑的数字方法与原始方程的速率函数之间的误差估计,我们证明这些数字方法能够以最小化的方式弱化地保存样本路径的LDPs和原方程的惯性测量。这项工作提供了一种方法,通过最小化序列,证明以微噪音方法对具有微小噪音的SPDs进行上述两个LDPs微弱的无序保护。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

专知会员服务
20+阅读 · 2020年12月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员