本文首先给出了一种学习节点信息卷积隐含层的图网学习算法。根据标签是附着在节点上还是附着在图上,研究了两种类型的GNN。在此基础上,提出了一个完整的GNN训练算法收敛性设计和分析框架。该算法适用于广泛的激活函数,包括ReLU、Leaky ReLU、Sigmod、Softplus和Swish。实验表明,该算法保证了对基本真实参数的线性收敛速度。对于这两种类型的GNN,都用节点数或图数来表征样本复杂度。从理论上分析了特征维数和GNN结构对收敛率的影响。数值实验进一步验证了理论分析的正确性。

https://arxiv.org/pdf/2012.03429.pdf

成为VIP会员查看完整内容
20

相关内容

AAAI2021 | 学习预训练图神经网络
专知会员服务
116+阅读 · 2021年1月28日
【AAAI2021】层次推理图神经网络
专知会员服务
70+阅读 · 2020年12月27日
专知会员服务
108+阅读 · 2020年12月21日
专知会员服务
38+阅读 · 2020年11月24日
【CVPR2020】L2 ^GCN:图卷积网络的分层学习高效训练
专知会员服务
40+阅读 · 2020年3月31日
图神经网络火了?谈下它的普适性与局限性
机器之心
22+阅读 · 2019年7月29日
Arxiv
0+阅读 · 2021年2月7日
VIP会员
相关主题
相关VIP内容
AAAI2021 | 学习预训练图神经网络
专知会员服务
116+阅读 · 2021年1月28日
【AAAI2021】层次推理图神经网络
专知会员服务
70+阅读 · 2020年12月27日
专知会员服务
108+阅读 · 2020年12月21日
专知会员服务
38+阅读 · 2020年11月24日
【CVPR2020】L2 ^GCN:图卷积网络的分层学习高效训练
专知会员服务
40+阅读 · 2020年3月31日
微信扫码咨询专知VIP会员