We consider the termination problem for triangular weakly non-linear loops (twn-loops) over some ring $\mathcal{S}$ like $\mathbb{Z}$, $\mathbb{Q}$, or $\mathbb{R}$. Essentially, the guard of such a loop is an arbitrary Boolean formula over (possibly non-linear) polynomial inequations, and the body is a single assignment $(x_1, \ldots, x_d) \longleftarrow (c_1 \cdot x_1 + p_1, \ldots, c_d \cdot x_d + p_d)$ where each $x_i$ is a variable, $c_i \in \mathcal{S}$, and each $p_i$ is a (possibly non-linear) polynomial over $\mathcal{S}$ and the variables $x_{i+1},\ldots,x_{d}$. We present a reduction from the question of termination to the existential fragment of the first-order theory of $\mathcal{S}$ and $\mathbb{R}$. For loops over $\mathbb{R}$, our reduction entails decidability of termination. For loops over $\mathbb{Z}$ and $\mathbb{Q}$, it proves semi-decidability of non-termination. Furthermore, we present a transformation to convert certain non-twn-loops into twn-form. Then the original loop terminates iff the transformed loop terminates over a specific subset of $\mathbb{R}$, which can also be checked via our reduction. This transformation also allows us to prove tight complexity bounds for the termination problem for two important classes of loops which can always be transformed into twn-loops.


翻译:我们考虑的是一些环上的 $\ mathbb+$, $\ mathbb+$, $\ mathb+$, 或$\ mathb{R} 美元等三角非线性环形( twn- loops) 的终止问题。 基本上, 这种环形的守护是一个任意的布利恩公式( 可能非线性) 多式对齐, 身体是一个单项任务 $ (x_ 1, \ ldot, x_ d) 的终止问题 。 圆形( c_ 1\ cdx_ 1 + p_ 1,\ ldots, c_ ddbb+ p_ d) 美元 的终止问题 。 每一项美元是( 可能非线性) 超线性 多元性 { {S& mathcal_ cal_ cal_ fal_ 问题 。 我们能证明 美元 =xxxxxxxxxxxxxxxxxxlal_ 变换 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【UAI 2019 Tutorials】深度学习数学(Mathematics of Deep Learning)
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月13日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【UAI 2019 Tutorials】深度学习数学(Mathematics of Deep Learning)
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员