The affective reasoning task is a set of emerging affect-based tasks in conversation, including Emotion Recognition in Conversation (ERC),Emotion-Cause Pair Extraction (ECPE), and Emotion-Cause Span Recognition (ECSR). Existing methods make various assumptions on the apparent relationship while neglecting the essential causal model due to the nonuniqueness of skeletons and unobservability of implicit causes. This paper settled down the above two problems and further proposed Conversational Affective Causal Discovery (CACD). It is a novel causal discovery method showing how to discover causal relationships in a conversation via designing a common skeleton and generating a substitute for implicit causes. CACD contains two steps: (i) building a common centering one graph node causal skeleton for all utterances in variable-length conversations; (ii) Causal Auto-Encoder (CAE) correcting the skeleton to yield causal representation through generated implicit causes and known explicit causes. Comprehensive experiments demonstrate that our novel method significantly outperforms the SOTA baselines in six affect-related datasets on the three tasks.
翻译:暂无翻译