State-of-the-art machine translation (MT) systems are typically trained to generate the "standard" target language; however, many languages have multiple varieties (regional varieties, dialects, sociolects, non-native varieties) that are different from the standard language. Such varieties are often low-resource, and hence do not benefit from contemporary NLP solutions, MT included. We propose a general framework to rapidly adapt MT systems to generate language varieties that are close to, but different from, the standard target language, using no parallel (source--variety) data. This also includes adaptation of MT systems to low-resource typologically-related target languages. We experiment with adapting an English--Russian MT system to generate Ukrainian and Belarusian, an English--Norwegian Bokm{\aa}l system to generate Nynorsk, and an English--Arabic system to generate four Arabic dialects, obtaining significant improvements over competitive baselines.


翻译:最先进的机器翻译(MT)系统一般都经过培训,以产生“标准”目标语言;然而,许多语言的多种品种(区域品种、方言、社会理解、非本地品种)与标准语言不同,这些品种往往资源贫乏,因此无法从当代NLP解决方案中受益,包括MT。我们提出了一个总体框架,用于迅速调整MT系统,以生成接近标准目标语言但与标准目标语言相异的语文品种,使用不平行的(来源多样性)数据。这也包括使MT系统适应与资源低级类型相关的目标语言。我们试行英语-俄语MT系统,以生成乌克兰语和白俄罗斯语,一种英语-挪威语-挪威语-Bokm_a}l系统,以生成Nynornorsk语,以及一种英语-阿拉伯语系统,以生成四种阿拉伯语方言,在竞争基线基础上取得显著改进。

0
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
36+阅读 · 2020年3月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
3+阅读 · 2018年5月28日
Arxiv
3+阅读 · 2018年4月11日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关VIP内容
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
36+阅读 · 2020年3月3日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员