Millions of people around the world can not access content on the Web because most of the content is not readily available in their language. Machine translation (MT) systems have the potential to change this for many languages. Current MT systems provide very accurate results for high resource language pairs, e.g., German and English. However, for many low resource languages, MT is still under active research. The key challenge is lack of datasets to build these systems. We present Lesan, an MT system for low resource languages. Our pipeline solves the key bottleneck to low resource MT by leveraging online and offline sources, a custom OCR system for Ethiopic and an automatic alignment module. The final step in the pipeline is a sequence to sequence model that takes parallel corpus as input and gives us a translation model. Lesan's translation model is based on the Transformer architecture. After constructing a base model, back translation, is used to leverage monolingual corpora. Currently Lesan supports translation to and from Tigrinya, Amharic and English. We perform extensive human evaluation and show that Lesan outperforms state-of-the-art systems such as Google Translate and Microsoft Translator across all six pairs. Lesan is freely available and has served more than 10 million translations so far. At the moment, there are only 217 Tigrinya and 15,009 Amharic Wikipedia articles. We believe that Lesan will contribute towards democratizing access to the Web through MT for millions of people.


翻译:全世界数百万人无法在网络上访问内容,因为大多数内容都无法随时以其语言提供。机器翻译系统有可能改变许多语言的这种变化。当前的MT系统为高资源语言配对,例如德文和英文提供了非常准确的结果。然而,对于许多低资源语言,MT仍然在积极研究中。关键的挑战在于缺乏建立这些系统的数据集。我们展示了低资源语言的MT系统Lesan。我们的管道通过利用在线和离线来源、Ethiopic的定制OCR系统和自动校正模块,解决了关键瓶颈到低资源MT。目前MT系统解决了关键瓶颈到低资源MT。目前,我们进行广泛的人类评估,并展示了Lesan outformormats Ethiopic System系统序列序列序列的序列,该模型作为投入了平行材料,并给我们提供了翻译模型。Lesan的翻译模型以变换结构为基础。在建立基础模型、背翻译后,用来利用单一语言的Corsoora。目前,Lesan支持从Tigrinya、Amharc 和英语进行翻译。我们进行了广泛的人文评价,并展示了Enexformal-fro-frofroformas-formam-s-s-s-s-s-sal exmationalsilvas

0
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
65+阅读 · 2021年11月15日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月4日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关VIP内容
【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
65+阅读 · 2021年11月15日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
相关资讯
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月4日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员