In this work we prove that, for a general polyhedral domain of $\Real^3$, the cohomology spaces of the discrete de Rham complex of [Di Pietro and Droniou, An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincar\'e inequalities, and consistency, Found. Comput. Math., 2021, DOI: \href{https://dx.doi.org/10.1007/s10208-021-09542-8}{10.1007/s10208-021-09542-8}] are isomorphic to those of the continuous de Rham complex. This is, to the best of our knowledge, the first result of this kind for an arbitrary-order complex built from a general polyhedral mesh.


翻译:在这项工作中,我们证明了对于$\Real^3$ 的一般多面体域,根据[Di Pietro和Droniou,An arbitrary-order discrete de Rham complex on polyhedral meshes:Exactness,Poincaré inequalities,and consistency,Found. Comput. Math.,2021,DOI:\href {https://dx.doi.org/10.1007/s10208-021-09542-8} {10.1007/s10208-021-09542-8}]构建的任意阶复形的上同调空间与连续deRham复形相同。据我们所知,这是从一般的多面体网格构建任意阶复形的这种结果中的首个成果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
88+阅读 · 2021年11月26日
专知会员服务
26+阅读 · 2021年4月2日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
40+阅读 · 2020年9月27日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月27日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员