In this work we prove that, for a general polyhedral domain of $\Real^3$, the cohomology spaces of the discrete de Rham complex of [Di Pietro and Droniou, An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincar\'e inequalities, and consistency, Found. Comput. Math., 2021, DOI: \href{https://dx.doi.org/10.1007/s10208-021-09542-8}{10.1007/s10208-021-09542-8}] are isomorphic to those of the continuous de Rham complex. This is, to the best of our knowledge, the first result of this kind for an arbitrary-order complex built from a general polyhedral mesh.
翻译:在这项工作中,我们证明了对于$\Real^3$ 的一般多面体域,根据[Di Pietro和Droniou,An arbitrary-order discrete de Rham complex on polyhedral meshes:Exactness,Poincaré inequalities,and consistency,Found. Comput. Math.,2021,DOI:\href {https://dx.doi.org/10.1007/s10208-021-09542-8} {10.1007/s10208-021-09542-8}]构建的任意阶复形的上同调空间与连续deRham复形相同。据我们所知,这是从一般的多面体网格构建任意阶复形的这种结果中的首个成果。