A novel approach for vehicle tracking using a hybrid adaptive Kalman filter is proposed. The filter utilizes recurrent neural networks to learn the vehicle's geometrical and kinematic features, which are then used in a supervised learning model to determine the actual process noise covariance in the Kalman framework. This approach addresses the limitations of traditional linear Kalman filters, which can suffer from degraded performance due to uncertainty in the vehicle kinematic trajectory modeling. Our method is evaluated and compared to other adaptive filters using the Oxford RobotCar dataset, and has shown to be effective in accurately determining the process noise covariance in real-time scenarios. Overall, this approach can be implemented in other estimation problems to improve performance.
翻译:提出了使用混合适应性卡尔曼过滤器对车辆进行跟踪的新办法。过滤器利用经常性神经网络来学习车辆的几何和运动特征,然后在受监督的学习模型中使用这些特征来确定卡尔曼框架的实际过程噪音共变情况。这个办法处理传统线性卡尔曼过滤器的局限性,由于车辆动能轨迹模型的不确定性,这些过滤器的性能可能退化。我们的方法经过评估,并与其他采用牛津机器人汽车数据集的适应性过滤器进行比较,并证明在准确确定实时情景中过程噪音共变方面是有效的。总的来说,这一办法可以在其他估计问题中实施,以改善性能。</s>