Information from frequency bands in biomedical time series provides useful summaries of the observed signal. Many existing methods consider summaries of the time series obtained over a few well-known, pre-defined frequency bands of interest. However, these methods do not provide data-driven methods for identifying frequency bands that optimally summarize frequency-domain information in the time series. A new method to identify partition points in the frequency space of a multivariate locally stationary time series is proposed. These partition points signify changes across frequencies in the time-varying behavior of the signal and provide frequency band summary measures that best preserve the nonstationary dynamics of the observed series. An $L_2$ norm-based discrepancy measure that finds differences in the time-varying spectral density matrix is constructed, and its asymptotic properties are derived. New nonparametric bootstrap tests are also provided to identify significant frequency partition points and to identify components and cross-components of the spectral matrix exhibiting changes over frequencies. Finite-sample performance of the proposed method is illustrated via simulations. The proposed method is used to develop optimal frequency band summary measures for characterizing time-varying behavior in resting-state electroencephalography (EEG) time series, as well as identifying components and cross-components associated with each frequency partition point.


翻译:生物医学时间序列中的频带信息提供了观察到的信号的有用摘要。许多现有方法都考虑在几个众所周知的、预先确定的感兴趣频带中获得的时间序列摘要。但是,这些方法并不提供数据驱动的方法,用以确定在时间序列中最优化地总结频率域信息的频带。还提出了在多变本地固定时间序列的频率空间中确定分隔点的新方法。这些分区点表示信号时间变化的频率变化,并提供频率频带汇总措施,以最好地保存所观察到的序列的非静止动态。一个基于标准的基于$L_2美元的测量标准差异措施,该措施发现时间光谱密度矩阵的差异,并得出其无湿度特性。还提供新的非参数陷阱测试,以确定显著的频率分隔点,并查明显示频率变化的频谱矩阵的组件和跨构件。通过模拟来说明拟议方法的微量性功能。拟议方法用于制定频率频带优化的频带汇总措施,用于确定时间变化时间变化的频谱矩阵,确定每个恒定的频率序列,确定每个恒定的频率序列,确定每个恒定的频率。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月5日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员