This article considers the popular MCMC method of unadjusted Langevin Monte Carlo (LMC) and provides a non-asymptotic analysis of its sampling error in 2-Wasserstein distance. The proof is based on a refinement of mean-square analysis in Li et al. (2019), and this refined framework automates the analysis of a large class of sampling algorithms based on discretizations of contractive SDEs. Using this framework, we establish an $\tilde{O}(\sqrt{d}/\epsilon)$ mixing time bound for LMC, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the 3rd-order derivative of the potential of target measures. This bound improves the best previously known $\tilde{O}(d/\epsilon)$ result and is optimal (in terms of order) in both dimension $d$ and accuracy tolerance $\epsilon$ for target measures satisfying the aforementioned assumptions. Our theoretical analysis is further validated by numerical experiments.
翻译:这一条考虑了未调整的Langevin Monte Carlo(LMC)流行的MCMC方法,并且提供了对其在2-Wasserstein距离上的取样误差的非抽查分析。证据的依据是对Li等人(2019年)的平均值分析的改进(2019年),以及这一经过改进的框架使基于合同性SDE的离散性的大量抽样算法的分析自动化。利用这个框架,我们建立了美元(tilde{O}(sqrt{d}/\epsilon)美元混合时间,在通用的日志mooth和对日志坚固的convex条件下为LMC规定时间,而没有温暖开始,加上目标措施3级衍生物的增长条件。这一约束改进了以前已知的美元(d/\epsilon)美元的最佳结果,并且是符合上述假设的目标措施的最佳(按顺序)美元和准确容忍美元(efsilon),我们的理论分析得到了数字实验的进一步验证。