In this paper, we develop an integrated markerless gait tracking system with three Kinect v2 sensors. A geometric principle-based trilateration method is proposed for optimizing the accuracy of the measured gait data. To tackle the data synchronization problem among the Kinect clients and the server, a synchronization mechanism based on NTP (Network Time Protocol) is designed for synchronizing the server and Kinect clients' clocks. Furthermore, a time schedule is designed for timing each Kinect client's data transmission. In the experiment, participants are asked to perform a 60 s walk while the proposed tracking system obtains the participant's gait data. Six joints (including left hip, right hip, left knee, right knee, left ankle and right ankle) of the participants are tracked where the obtained gait data are described as 6000 {movements} of joint positions (1000 {movements} for each joint). The results show that the trilateration tracking result by the three Kinect sensors has a much higher accuracy compared with the accuracy measured by a single Kinect sensor. Within a randomly sampled time period (67.726 s in the experiment), 98.37% of the frames generated by the gait tracking system have timing errors less than 1 ms, which is much better than the default NTP service embedded in the Windows 8.1 operating system. The accuracy of the proposed system is quantitatively evaluated and verified by a comparison with a commercial medical system (Delsys Trigno Smart Sensor System).


翻译:在本文中, 我们开发了一个集成的无标记行进跟踪系统, 包括三个 Kinect v2 传感器。 为了优化测量的行进数据的准确性, 提议了一个基于几何原则的三角化方法 。 要解决Kinect 客户和服务器的数据同步问题, 一个基于 NTP (Network Time Protology) 的同步机制, 用于同步服务器和 Kinect 客户的时钟 。 此外, 为每个 Kinect 客户的数据传输时间设计了一个时间表 。 在实验中, 请参与者在拟议的跟踪系统获得参与者的行走数据时, 行走60 。 在随机抽样的时段( 包括左臀、 右臀、 左膝、 右膝、 左脚和右脚踝) 中, 六个参与者的连接点( 包括左臀、 左膝、 左脚和右踝) 。 在所获取的行曲调数据被描述为联合位置 ( 100 {movementment ) ( NTP ) 。 结果显示, 3个 Kinectal 跟踪结果比一个单一 Kinect 传感器的准确性传感器的准确性 。 在随机系统中, NTP 系统上, 的精确度系统中, 有比98.

0
下载
关闭预览

相关内容

Kinect for Xbox 360,简称 Kinect,是由微软开发,应用于 Xbox 360 主机的周边设备。它让玩家不需要手持或踩踏控制器,而是使用语音指令或手势来操作 Xbox 360 的系统界面。它也能捕捉玩家全身上下的动作,用身体来进行游戏,带给玩家“免控制器的游戏与娱乐体验”。 2009 年 6 月 1 日微软于 E3 游戏展中公布名为“Project Natal”(诞生计划)的感应器,它能够捕捉使用者的肢体动作,或是进行脸部辨识。感应器也内建麦克风,可以用来识别语音指令。此感应器兼容于所有 Xbox 360 主机,玩家只需新购此感应器就可直接使用。 2010 年的 E3 电玩展,微软宣布 Project Natal 的正式名称为“Kinect”,并预计在 2010 年 11 月 4 日于美国上市,建议售价 149 美金。台湾则在2010 年 11 月 20 日上市。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月27日
Arxiv
17+阅读 · 2021年3月29日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员