This paper aims to tackle Multiple Object Tracking (MOT), an important problem in computer vision but remains challenging due to many practical issues, especially occlusions. Indeed, we propose a new real-time Depth Perspective-aware Multiple Object Tracking (DP-MOT) approach to tackle the occlusion problem in MOT. A simple yet efficient Subject-Ordered Depth Estimation (SODE) is first proposed to automatically order the depth positions of detected subjects in a 2D scene in an unsupervised manner. Using the output from SODE, a new Active pseudo-3D Kalman filter, a simple but effective extension of Kalman filter with dynamic control variables, is then proposed to dynamically update the movement of objects. In addition, a new high-order association approach is presented in the data association step to incorporate first-order and second-order relationships between the detected objects. The proposed approach consistently achieves state-of-the-art performance compared to recent MOT methods on standard MOT benchmarks.
翻译:本文旨在解决计算机视野中的一个重要问题——多物体跟踪(MOT)问题,但由于许多实际问题,特别是隐蔽性的问题,多物体跟踪(MOT)问题仍然具有挑战性。事实上,我们提议采用新的实时深度透视多物体跟踪(DP-MOT)方法来解决MOT中的隔离问题。首先建议采用简单而有效的主题分流深度估算(SODE),以不受监督的方式自动排列在二维场景中被检测到的物体的深度位置。利用SODE的输出,即一个新的主动型伪-3D Kalman过滤器,这是Kalman过滤器的简单而有效的扩展,然后提议以动态控制变量来动态更新物体移动。此外,在数据组合步骤中提出了一个新的高级关联方法,以纳入被检测到的物体之间的一阶和二阶关系。拟议方法与最近在标准的MOT基准上的MOT方法相比,始终实现了最先进的性能。</s>