Event argument extraction (EAE) is an important task for information extraction to discover specific argument roles. In this study, we cast EAE as a question-based cloze task and empirically analyze fixed discrete token template performance. As generating human-annotated question templates is often time-consuming and labor-intensive, we further propose a novel approach called "Learning to Ask," which can learn optimized question templates for EAE without human annotations. Experiments using the ACE-2005 dataset demonstrate that our method based on optimized questions achieves state-of-the-art performance in both the few-shot and supervised settings.
翻译:事件参数提取( EAE) 是信息提取的重要任务, 以发现具体的参数作用 。 在这项研究中, 我们将 EEA 作为一种基于问题的凝聚任务, 并用经验分析固定的离散象征性模板性能。 由于生成附加说明的问题模板通常耗时且劳动密集型, 我们进一步提议了一种名为“ 学习询问” 的新颖方法, 它可以在没有人类注释的情况下为 EEA 学习优化的问题模板 。 使用 ACE- 2005 数据集的实验表明, 我们基于优化问题的方法在微小且受监督的环境中都取得了最先进的性能 。