Clustering is one of the most fundamental tasks in machine learning. Recently, deep clustering has become a major trend in clustering techniques. Representation learning often plays an important role in the effectiveness of deep clustering, and thus can be a principal cause of performance degradation. In this paper, we propose a clustering-friendly representation learning method using instance discrimination and feature decorrelation. Our deep-learning-based representation learning method is motivated by the properties of classical spectral clustering. Instance discrimination learns similarities among data and feature decorrelation removes redundant correlation among features. We utilize an instance discrimination method in which learning individual instance classes leads to learning similarity among instances. Through detailed experiments and examination, we show that the approach can be adapted to learning a latent space for clustering. We design novel softmax-formulated decorrelation constraints for learning. In evaluations of image clustering using CIFAR-10 and ImageNet-10, our method achieves accuracy of 81.5% and 95.4%, respectively. We also show that the softmax-formulated constraints are compatible with various neural networks.
翻译:集束是机器学习的最根本任务之一。 最近, 深层集束已成为集束技术的一个主要趋势。 代表性学习往往在深层集束的效果方面起着重要作用, 因而可能成为造成性能退化的主要原因。 本文中, 我们提出一种有利于集束的代言学习方法, 使用实例歧视和特征装饰。 我们的深层学习代言学习方法是由古典光谱集的特性所驱动的。 典型的区别在数据和特征装饰关系中发现相似性, 消除了各特征之间的重复关联。 我们使用实例歧视方法, 学习个别实例班导致学习实例的相似性。 通过详细的实验和检查, 我们显示该方法可以适应学习潜在的集束空间。 我们设计了新的软式成形的变形变形调节限制来学习。 在使用CIFAR- 10 和 图像网- 10 进行图像群集评价时, 我们的方法的精度分别为8. 1.5% 和95.4% 。 我们还表明软式成型的制约与各种神经网络是相容的。