Medical professionals frequently work in a data constrained setting to provide insights across a unique demographic. A few medical observations, for instance, informs the diagnosis and treatment of a patient. This suggests a unique setting for meta-learning, a method to learn models quickly on new tasks, to provide insights unattainable by other methods. We investigate the use of meta-learning and robustness techniques on a broad corpus of benchmark text and medical data. To do this, we developed new data pipelines, combined language models with meta-learning approaches, and extended existing meta-learning algorithms to minimize worst case loss. We find that meta-learning on text is a suitable framework for text-based data, providing better data efficiency and comparable performance to few-shot language models and can be successfully applied to medical note data. Furthermore, meta-learning models coupled with DRO can improve worst case loss across disease codes.
翻译:医疗专业人员经常在一个数据紧张的环境中工作,以提供独特的人口结构的洞察力。例如,一些医疗观察,为病人的诊断和治疗提供信息。这意味着一种独特的元学习环境,这是一种在新任务上快速学习模型的方法,以其他方法无法实现的洞察力;我们调查在一系列广泛的基准文本和医疗数据基础上使用元学习和稳健技术的情况。为了做到这一点,我们开发了新的数据管道,将语言模型与元学习方法相结合,并扩展现有的元学习算法,以尽量减少最严重的病例损失。我们发现,文本的元学习是基于文本的数据的合适框架,为少见的语言模型提供更好的数据效率和可比的性能,并且可以成功地应用于医学注释数据。此外,元学习模型加上DRO可以改善疾病代码中最坏的病例损失。