Based on the canonical correlation analysis we derive series representations of the probability density function (PDF) and the cumulative distribution function (CDF) of the information density of arbitrary Gaussian random vectors. Using the series representations we give closed-form expressions of the PDF and CDF for important special cases and derive tight approximations for the general case. Furthermore, we derive recurrence formulas, which allow very efficient numerical calculations with an arbitrarily high accuracy as demonstrated with an implementation in Python publicly available on GitLab. Finally, we discuss the (in)validity of Gaussian approximations of the information density.
翻译:我们根据卡通相关分析得出了任意高斯随机矢量信息密度的概率密度函数(PDF)和累积分布函数(CDF)的系列表示。我们用序列表示方式对重要特殊情况给出PDF和CDF的封闭式表达方式,并对一般情况得出近似值。此外,我们得出重现公式,从而可以任意地以高精确度计算非常高效的数字计算,如在GitLab上公开的Python中的实施所证明的那样。最后,我们讨论了Gausian对信息密度的近似值的(内)有效性。