【导读】《机器学习:贝叶斯和优化的视角》是雅典大学信息学和通信系的教授Sergios Theodoridis的经典著作,对所有主要的机器学习方法和新研究趋势进行了深入探索,涵盖概率和确定性方法以及贝叶斯推断方法。非常值得学习。
Sergios Theodoridis教授是雅典大学信息学和通信系的教授,香港中文大学(深圳)客座教授。他的研究领域是信号处理和机器学习。他的研究兴趣是自适应算法,分布式和稀疏性感知学习,机器学习和模式识别,生物医学应用中的信号处理和学习以及音频处理和检索。
他的几本著作与合著蜚声海内外,包括《机器学习:贝叶斯和优化的视角》以及畅销书籍《模式识别》。他是2017年EURASIP Athanasios Papoulis奖和2014年EURASIP Meritorious Service奖的获得者。
http://cgi.di.uoa.gr/~stheodor/
机器学习:贝叶斯和优化方法
本书对所有主要的机器学习方法和新研究趋势进行了深入探索,涵盖概率和确定性方法以及贝叶斯推断方法。其中,经典方法包括平均/小二乘滤波、卡尔曼滤波、随机逼近和在线学习、贝叶斯分类、决策树、逻辑回归和提升方法等,新趋势包括稀疏、凸分析与优化、在线分布式算法、RKH空间学习、贝叶斯推断、图模型与隐马尔可夫模型、粒子滤波、深度学习、字典学习和潜变量建模等。全书构建了一套明晰的机器学习知识体系,各章内容相对独立,物理推理、数学建模和算法实现精准且细致,并辅以应用实例和习题。本书适合该领域的科研人员和工程师阅读,也适合学习模式识别、统计/自适应信号处理和深度学习等课程的学生参考。