This paper gives a new approach for the maximum likelihood estimation of the joint of the location and scale of the Cauchy distribution. We regard the joint as a single complex parameter and derive a new form of the likelihood equation of a complex variable. Based on the equation, we provide a new iterative scheme approximating the maximum likelihood estimate. We also handle the equation in an algebraic manner and derive a polynomial containing the maximum likelihood estimate as a root. This algebraic approach provides another scheme approximating the maximum likelihood estimate by root-finding algorithms for polynomials, and furthermore, gives non-existence of closed-form formulae for the case that the sample size is five. We finally provide some numerical examples to show our method is effective.


翻译:本文给出了对Cauchy分布分布位置和比例的组合最大可能性估计的新方法。 我们将联合视为一个单一的复杂参数, 并得出一个复杂变量的可能性方程式的新形式。 基于此方程式, 我们提供一个新的迭代方案, 与最大可能性估计相近。 我们还以代数方式处理该方程式, 并得出一个包含最大可能性估计值作为根数的多元分子。 这种代数法提供了另一个方案, 接近于对多元数值的根值算法的最大可能性估计值, 此外, 我们为样本大小为五的情况提供了封闭式公式的不存在。 我们最后提供了一些数字示例, 以显示我们的方法是有效的 。

0
下载
关闭预览

相关内容

在统计学中,最大似然估计(maximum likelihood estimation, MLE)是通过最大化似然函数估计概率分布参数的一种方法,使观测数据在假设的统计模型下最有可能。参数空间中使似然函数最大化的点称为最大似然估计。最大似然逻辑既直观又灵活,因此该方法已成为统计推断的主要手段。
【经典书】凸优化理论,MIT-Dimitri P. Bertsekas教授,257页pdf
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
29+阅读 · 2020年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员