We study the problem of locating the source of an epidemic diffusion process from a sparse set of sensors, under noise. In a graph $G=(V,E)$, an unknown source node $v^* \in V$ is drawn uniformly at random, and unknown edge weights $w(e)$ for $e\in E$, representing the propagation delays along the edges, are drawn independently from a Gaussian distribution of mean $1$ and variance $\sigma^2$. An algorithm then attempts to locate $v^*$ by picking sensor (also called query) nodes $s \in V$ and being told the length of the shortest path between $s$ and $v^*$ in graph $G$ weighted by $w$. We consider two settings: static, in which all query nodes must be decided in advance, and sequential, in which each query can depend on the results of the previous ones. We characterize the query complexity when $G$ is an $n$-node path. In the static setting, $\Theta(n\sigma^2)$ queries are needed for $\sigma^2 \leq 1$, and $\Theta(n)$ for $\sigma^2 \geq 1$. In the sequential setting, somewhat surprisingly, only $\Theta(\log\log_{1/\sigma}n)$ are needed when $\sigma^2 \leq 1/2$, and $\Theta(\log \log n)+O_\sigma(1)$ when $\sigma^2 \geq 1/2$. This is the first mathematical study of source location under non-trivial amounts of noise.


翻译:我们研究的是将流行病扩散过程的来源从一组稀有的传感器中找出的问题。 在一张$G=(V,E)$的图中, 一个未知的源节点是美元=(V,E) 美元以随机方式平均地绘制, 而一个未知的源节点是美元=(e) 美元=(美元) 美元=(e) 美元=(e) 美元=(e) 美元=(e) 美元=(e) 美元=(e) 美元=(e) 美元=(e) 美元=(e) 美元=(g) 美元=(g) 美元=(e) =(v) 美元=(美元) 美元=(n) 美元=(n) 美元=(n) =(n) 美元=(n) =(g) =(g) =(g) =($) =(n) =(g) =(g) =(g) =(g) =(美元=(n) =(x) =(美元) =(x) =(美元)

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月7日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员