A datatype defining rewrite system (DDRS) is an algebraic (equational) specification intended to specify a datatype. When interpreting the equations from left-to-right, a DDRS defines a term rewriting system that must be ground-complete. First we define two DDRSs for the ring of integers, each comprising twelve rewrite rules, and prove their ground-completeness. Then we introduce natural number and integer arithmetic specified according to unary view, that is, arithmetic based on a postfix unary append constructor (a form of tallying). Next we specify arithmetic based on two other views: binary and decimal notation. The binary and decimal view have as their characteristic that each normal form resembles common number notation, that is, either a digit, or a string of digits without leading zero, or the negated versions of the latter. Integer arithmetic in binary and decimal notation is based on (postfix) digit append functions. For each view we define a DDRS, and in each case the resulting datatype is a canonical term algebra that extends a corresponding canonical term algebra for natural numbers. Then, for each view, we consider an alternative DDRS based on tree constructors that yields comparable normal forms, which for that view admits expressions that are algorithmically more involved. For all DDRSs considered, ground-completeness is proven.


翻译:数据类型定义重写系统( DDRS) 是用于指定数据类型的代数( equation) 。 在解释左对右方方的方程式时, 一个 DDS 定义了一个术语重写系统, 它必须是地面完成的。 首先, 我们为整数环定义了两个 DDS, 每个整数环由12 重写规则组成, 并证明它们的地面完整性。 然后, 我们根据单词视图, 即根据后缀单子附加器( 一种计算形式) 引入自然数和整数计算。 下一步, 我们根据后缀附加器( 后缀) 进行算术( 一种计算形式) 。 我们根据另外两种观点定义了解算术: 二进制和小数标记。 二进制和小数视图的特性是, 每个正常形式都类似于通用的编号, 即数字, 或数字, 或数字, 或数字, 或数, 或数, 或数数, 或数, 以( 后缀) 数字为( 后缀) 数附加功能附加功能功能。 对于每个视图, 我们定义定义的代变数, 变数为一个 Campal- realbra 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
9+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员