We derive fundamental performance limitations for intrinsic average consensus problems in open multi-agent systems, which are systems subject to frequent arrivals and departures of agents. Each agent holds a value, and the objective of the agents is to collaboratively estimate the average of the values of the agents presently in the system. Algorithms solving such problems in open systems are poised to never converge because of the permanent variations in the composition, size and objective pursued by the agents of the system. We provide lower bounds on the expected Mean Square Error of averaging algorithms in open systems of fixed size. Our derivation is based on the analysis of an algorithm that achieves optimal performance for a given model of replacements. We obtain a general bound that depends on the properties of the model defining the interactions between the agents, and instantiate that result for all-to-one and one-to-one interaction models. A comparison between those bounds and algorithms implementable with those models is then provided to highlight their validity.


翻译:我们从开放多试剂系统中固有的平均共识问题获得基本的业绩限制,这些系统是受频繁到达和代理人离开制约的系统。每个代理人都有价值,而且代理人的目标是合作估计目前系统中代理商价值的平均值。在开放系统中解决这些问题的分级法由于系统代理商在组成、规模和目的上的长期变化而可能永远无法汇合。我们对在固定大小的开放系统中平均算法的预期平均差平方错误提供了较低的界限。我们的推算法是基于一种算法的分析,这种算法能够使某种替代模型达到最佳性能。我们获得了一个取决于确定代理商之间相互作用的模式特性的一般界限,并立即得出所有一对一互动模式和一对一互动模式的结果。然后将那些界限和可执行的算法与这些模型进行比较,以突出其有效性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月4日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Compositional Generalization in Image Captioning
Arxiv
3+阅读 · 2019年9月16日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员