We propose a new strategy for best-arm identification with fixed confidence of Gaussian variables with bounded means and unit variance. This strategy, called Exploration-Biased Sampling, is not only asymptotically optimal: it is to the best of our knowledge the first strategy with non-asymptotic bounds that asymptotically matches the sample complexity.But the main advantage over other algorithms like Track-and-Stop is an improved behavior regarding exploration: Exploration-Biased Sampling is biased towards exploration in a subtle but natural way that makes it more stable and interpretable. These improvements are allowed by a new analysis of the sample complexity optimization problem, which yields a faster numerical resolution scheme and several quantitative regularity results that we believe of high independent interest.
翻译:我们提出了一个新战略,以固定的信心,对高山变量进行最佳武器识别,并有封闭手段和单位差异。这个战略被称为“勘探-比亚抽样抽样调查”,它不仅在本质上是最佳的:根据我们所知,这是第一个具有非非非抽量界限的战略,与抽样复杂性无异。 但是,相对于其他算法,例如“追踪与停止”的主要优势是改进了勘探行为:探索-比亚抽样调查偏向于以微妙但自然的方式进行勘探,从而使其更加稳定和易于解释。通过对抽样复杂性优化问题进行新的分析,可以实现这些改进。 新的分析可以产生更快的数字解决方案和一些我们认为具有高度独立兴趣的定量常规性结果。