Adversarial learning has emerged as one of the successful techniques to circumvent the susceptibility of existing methods against adversarial perturbations. However, the majority of existing defense methods are tailored to defend against a single category of adversarial perturbation (e.g. $\ell_\infty$-attack). In safety-critical applications, this makes these methods extraneous as the attacker can adopt diverse adversaries to deceive the system. Moreover, training on multiple perturbations simultaneously significantly increases the computational overhead during training. To address these challenges, we propose a novel meta-learning framework that explicitly learns to generate noise to improve the model's robustness against multiple types of attacks. Its key component is Meta Noise Generator (MNG) that outputs optimal noise to stochastically perturb a given sample, such that it helps lower the error on diverse adversarial perturbations. By utilizing samples generated by MNG, we train a model by enforcing the label consistency across multiple perturbations. We validate the robustness of models trained by our scheme on various datasets and against a wide variety of perturbations, demonstrating that it significantly outperforms the baselines across multiple perturbations with a marginal computational cost.


翻译:在安全关键应用中,由于攻击者可以采用不同的对手来欺骗系统,因此这些方法就具有外在意义。此外,关于多重扰动的培训同时大大提高了培训期间的计算间接费用。为了应对这些挑战,我们提议了一个新型的元学习框架,明确学会产生噪音,以提高模型对多种类型攻击的稳健性。它的关键组成部分是Meta Noise生成器(MNG),它能产生最佳的噪音来对特定样本进行随机扰动,从而帮助降低多种对抗性扰动的错误。通过利用由攻击者生成的样本,我们通过在多个扰动中加强标签一致性来培训一个模型。我们验证了我们所培训的各种数据集模型的稳健性,以及防止多种类型攻击的广度扰动性。它显示,它超越了多种成本的基线。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【论文】欺骗学习(Learning by Cheating)
专知会员服务
26+阅读 · 2020年1月3日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
7+阅读 · 2018年6月19日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【论文】欺骗学习(Learning by Cheating)
专知会员服务
26+阅读 · 2020年1月3日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
7+阅读 · 2018年6月19日
Arxiv
4+阅读 · 2015年3月20日
Top
微信扫码咨询专知VIP会员