In settings from fact-checking to question answering, we frequently want to know whether a collection of evidence (premises) entails a hypothesis. Existing methods primarily focus on the end-to-end discriminative version of this task, but less work has treated the generative version in which a model searches over the space of statements entailed by the premises to constructively derive the hypothesis. We propose a system for doing this kind of deductive reasoning in natural language by decomposing the task into separate steps coordinated by a search procedure, producing a tree of intermediate conclusions that faithfully reflects the system's reasoning process. Our experiments on the EntailmentBank dataset (Dalvi et al., 2021) demonstrate that the proposed system can successfully prove true statements while rejecting false ones. Moreover, it produces natural language explanations with a 17% absolute higher step validity than those produced by an end-to-end T5 model.
翻译:在从核对事实到回答问题的场合中,我们经常想知道收集证据(房地)是否包含一种假设。 现有方法主要侧重于这项任务的端到端的歧视性版本,但处理基因化版本的工作较少,在这种版本中,对房地所涉陈述空间进行示范搜索,以建设性地得出假设。 我们建议采用一种制度,用自然语言进行这种推理推理,将任务分解成由搜索程序协调的不同步骤,产生一棵忠实反映系统推理过程的中间结论。 我们在EntailmentBank数据集(Dalvi等人,2021年)上的实验表明,拟议的系统可以成功证明真实陈述,同时拒绝虚假陈述。此外,它产生的自然语言解释比终端至终端T5模型的精确度高出17%。