How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, and paraphrasing. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 18.9% on the GLUE benchmark.
翻译:没有标签或附加未加标签的数据,我们如何将预先培训的模式扩大到许多语言理解任务?事先培训的语言模式(PLM)对于广泛的非LP任务是有效的。然而,现有的方法要么要求对下游标签数据集进行微调,要么手工构建适当的提示。在本文中,我们建议非参数性推动PLM(NPPrompt)对完全零发语言理解。与以往的方法不同,NPPrompt只使用预先培训的语言模式,不要求任何标签数据或额外的原始材料进一步微调,也不依赖人类来构建一套全面的快速标签词。我们根据以前关于不同的NLP任务的主要几发和零发学习方法评估NPPrompt:包括文本分类、文本要求、类似的文本检索和副写。实验结果表明,我们的NPPrompt用大边距来改进了以前最好的完全零发方法,在文本分类上绝对提高了12.8%的准确率,在GLUE基准上增长了18.9%。