Suppose a matrix $A \in \mathbb{R}^{m \times n}$ of rank $r$ with singular value decomposition $A = U_{A}\Sigma_{A} V_{A}^{T}$, where $U_{A} \in \mathbb{R}^{m \times r}$, $V_{A} \in \mathbb{R}^{n \times r}$ are orthonormal and $\Sigma_{A} \in \mathbb{R}^{r \times r}$ is a diagonal matrix. The statistical leverage scores of a matrix $A$ are the squared row-norms defined by $\ell_{i} = \|(U_{A})_{i,:}\|_2^2$, where $i \in [m]$, and the matrix coherence is the largest statistical leverage score. These quantities play an important role in machine learning algorithms such as matrix completion and Nystr\"{o}m-based low rank matrix approximation as well as large-scale statistical data analysis applications, whose usual algorithm complexity is polynomial in the dimension of the matrix $A$. As an alternative to the conventional approach, and inspired by recent development on dequantization techniques, we propose a quantum-inspired algorithm for approximating the statistical leverage scores. We then analyze the accuracy of the algorithm and perform numerical experiments to illustrate the feasibility of our algorithm. Theoretical analysis shows that our novel algorithm takes time polynomial in an integer $k$, condition number $\kappa$ and logarithm of the matrix size.
翻译:假设一个基数 $A\ a\ mathbb{R\\ m\ r_ r_ r_ r_ r_ r_ 美元, 单值分解 $A = U ⁇ A\\ SIgma} A} V ⁇ A\ T} 美元, 美元在 mathbb{ R\ m\ r 美元, 美元在 mathbb{ R\ n r_ r_ r_ r_ 美元, 美元在 美元在 mathbral_ r_ r_ r_ r_ r_ r_ 美元在 美元在 美元 =A\ = = = *A} = 美元在 mathbr_ { { { r_ r_ r_ r_ r_ r_ r_ 美元, 美元在 r_ r_ r_ r_ 美元 美元在 美元 美元 美元 美元 美元 的 美元 的 的等级算算法中排名中, 基数在 机器学习算算算法中扮演着重要。