Mixing by cutting-and-shuffling can be understood and predicted using dynamical systems based tools and techniques. In existing studies, mixing is generated by maps that repeat the same cut-and-shuffle process at every iteration, in a "fixed" manner. However, mixing can be greatly improved by varying the cut-and-shuffle parameters at each step, using a "variable" approach. To demonstrate this approach, we show how to optimize mixing by cutting-and-shuffling on the one-dimensional line interval, known as an interval exchange transformation (IET). Mixing can be significantly improved by optimizing variable protocols, especially for initial conditions more complex than just a simple two-color line interval. While we show that optimal variable IETs can be found analytically for arbitrary numbers of iterations, for more complex cutting-and-shuffling systems, computationally expensive numerical optimization methods would be required. Furthermore, the number of control parameters grows linearly with the number of iterations in variable systems. Therefore, optimizing over large numbers of iterations is generally computationally prohibitive. We demonstrate an ad hoc approach to cutting-and-shuffling that is computationally inexpensive and guarantees the mixing metric is within a constant factor of the optimum. This ad hoc approach yields significantly better mixing than fixed IETs which are known to produce weak-mixing, because cut pieces never reconnect. The heuristic principles of this method can be applied to more general cutting-and-shuffling systems.


翻译:使用动态系统工具和技术可以理解和预测使用剪切和打拼混合的方法。 在现有的研究中,混合是由在每一次迭代中以“固定”的方式重复同样的剪切和打拼过程的地图产生的。 但是,通过使用“可变”的方法,每一步的剪切和打拼参数不同,混合可以大大改进。为了展示这一方法,我们展示了如何在单维线间隔上通过剪切和打拼来优化混合,称为间距交换转换(IET)。在现有的研究中,混合可以通过优化可变协议而得到显著改进,特别是对于初始条件比简单的两色线间隔更复杂的情况。虽然我们表明,对任意迭接、更复杂的剪切和打混合系统而言,可以通过分析方式进行最优化的混合。此外,控制参数的数量随着变换系统中的迭接数的增多而直线增长。因此,优化大量交错的混合方法一般是难以计算出来的,特别是对于初始的两色线段线段的初始条件。我们展示的是,这种最优的易变换的 I,因为这个固定的计算方法是最精确的压和最精确的计算方法,因为这个最精确的方法是最精确的压的计算方法是最精确的。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
9+阅读 · 2019年4月19日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Learning to Importance Sample in Primary Sample Space
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
9+阅读 · 2019年4月19日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Learning to Importance Sample in Primary Sample Space
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
5+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员