We detail a novel class of implicit neural models. Leveraging time-parallel methods for differential equations, Multiple Shooting Layers (MSLs) seek solutions of initial value problems via parallelizable root-finding algorithms. MSLs broadly serve as drop-in replacements for neural ordinary differential equations (Neural ODEs) with improved efficiency in number of function evaluations (NFEs) and wall-clock inference time. We develop the algorithmic framework of MSLs, analyzing the different choices of solution methods from a theoretical and computational perspective. MSLs are showcased in long horizon optimal control of ODEs and PDEs and as latent models for sequence generation. Finally, we investigate the speedups obtained through application of MSL inference in neural controlled differential equations (Neural CDEs) for time series classification of medical data.
翻译:我们详细介绍了新型的隐性神经模型。利用时间-平行法对不同的方程式进行利用,多射层(MSL)通过平行的根调查算法寻求初步价值问题的解决办法。MSL基本上可以取代神经普通差异方程式(Neal ODEs),提高功能评价(NFEs)和墙钟推导时间的效率。我们开发了MSLs的算法框架,从理论和计算角度分析了不同的解决方案选择。MSLs展示于对ODEs和PDEs的长远最佳控制中,并作为序列生成的潜在模型。最后,我们调查了在神经控制差异方程式(Neural CDEs)中应用MSL推推推法对医疗数据进行时间序列分类的加速情况。