Equivariant neural networks have been successful in incorporating various types of symmetries, but are mostly limited to vector representations of geometric objects. Despite the prevalence of higher-order tensors in various application domains, e.g. in quantum chemistry, equivariant neural networks for general tensors remain unexplored. Previous strategies for learning equivariant functions on tensors mostly rely on expensive tensor factorization which is not scalable when the dimensionality of the problem becomes large. In this work, we propose unitary $N$-body tensor equivariant neural network (UNiTE), an architecture for a general class of symmetric tensors called $N$-body tensors. The proposed neural network is equivariant with respect to the actions of a unitary group, such as the group of 3D rotations. Furthermore, it has a linear time complexity with respect to the number of non-zero elements in the tensor. We also introduce a normalization method, viz., Equivariant Normalization, to improve generalization of the neural network while preserving symmetry. When applied to quantum chemistry, UNiTE outperforms all state-of-the-art machine learning methods of that domain with over 110% average improvements on multiple benchmarks. Finally, we show that UNiTE achieves a robust zero-shot generalization performance on diverse down stream chemistry tasks, while being three orders of magnitude faster than conventional numerical methods with competitive accuracy.


翻译:等离子神经网络成功地整合了各种类型的对称性,但大多限于几何物体的矢量表达。尽管在各个应用领域,例如量子化学领域,存在着高阶高压强器,但普通高压体的等离子神经网络仍然没有探索。以往对高压体学习等离异功能的战略大多依赖于昂贵的拉子因子化,当问题的规模变得巨大时,这种因子的大小是无法伸缩的。在这项工作中,我们建议采用统一的以美元为单位的体压异异性神经网络(UNITE),这是一系列一般的对等调异性高压强器的系统。拟议的神经网络对于一个单一组(如3D轮用组)的行动是无异的。此外,它对于零度的非零度元素的数量具有线性时间复杂性。我们还提出了一种正常化方法,即“等离子正态化化”,目的是改进神经网络的常规级结构,同时保持高压的直径直径直流,同时对通用的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
76+阅读 · 2021年1月29日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
8+阅读 · 2021年2月19日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
4+阅读 · 2021年4月13日
Arxiv
8+阅读 · 2021年2月19日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
4+阅读 · 2017年1月2日
Top
微信扫码咨询专知VIP会员