Tensor Networks are non-trivial representations of high-dimensional tensors, originally designed to describe quantum many-body systems. We show that Tensor Networks are ideal vehicles to connect quantum mechanical concepts to machine learning techniques, thereby facilitating an improved interpretability of neural networks. This study presents the discrimination of top quark signal over QCD background processes using a Matrix Product State classifier. We show that entanglement entropy can be used to interpret what a network learns, which can be used to reduce the complexity of the network and feature space without loss of generality or performance. For the optimisation of the network, we compare the Density Matrix Renormalization Group (DMRG) algorithm to stochastic gradient descent (SGD) and propose a joined training algorithm to harness the explainability of DMRG with the efficiency of SGD.
翻译:Tensor 网络是用于描述量子多体系统的高维强器的非三维表达式,我们显示Tensor 网络是将量子机械概念与机器学习技术连接起来的理想工具,从而有助于改善神经网络的可解释性。本研究报告介绍了使用一个产品母体国家分类仪对QCD背景过程的顶二次信号的区别。我们表明,可以使用缠绕酶来解释一个网络学到了什么,可以用来减少网络的复杂性和地物空间而不丧失一般性或性能。关于网络的优化,我们比较了密度矩阵变异学组的算法,将其与随机梯度梯度下降法作比较,并提出了一种联合培训算法,用SGD效率来利用DRG的可解释性。