We develop the theory and algorithmic toolbox for networked federated learning in decentralized collections of local datasets with an intrinsic network structure. This network structure arises from domain-specific notions of similarity between local datasets. Different notions of similarity are induced by spatio-temporal proximity, statistical dependencies or functional relations. Our main conceptual contribution is to formulate networked federated learning using a generalized total variation minimization. This formulation unifies and considerably extends existing federated multi-task learning methods. It is highly flexible and can be combined with a broad range of parametric models including Lasso or deep neural networks. Our main algorithmic contribution is a novel networked federated learning algorithm which is well-suited for distributed computing environments such as edge computing over wireless networks. This algorithm is robust against inexact computations due to limited computational resources. For local models resulting in convex problems, we derive precise conditions on the local models and their network structure such that our algorithm learns nearly optimal local models. Our analysis reveals an interesting interplay between the convex geometry of local models and the (cluster-) geometry of their network structure.


翻译:我们开发了网络化联合学习的理论和算法工具箱,用于在分散收集具有内在网络结构的地方数据集中进行网络化联合学习。这一网络结构源于地方数据集之间的相似性的域化概念。不同的相似性概念是由时空接近、统计依赖性或功能关系所引发的。我们的主要概念贡献是利用普遍的全面变异最小化来开发网络化联合学习。这一构思统一并大大扩展了现有的联合多任务学习方法。它非常灵活,可以与广泛的参数模型相结合,包括激光索或深神经网络。我们的主要算法贡献是一种新型的网络化联合学习算法,它非常适合分布式计算环境,例如超无线网络的边际计算。这种算法对于由于计算资源有限而导致的不精确计算是十分有力的。对于本地模型及其网络结构的精确条件,使我们的算法能够学习近乎最佳的本地模型。我们的分析揭示了本地模型和网络结构(分组)的直方对等仪和(集群)几何结构之间的令人感兴趣的相互作用。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员