Vertical Federated Learning (VFL) enables multiple data owners, each holding a different subset of features about largely overlapping sets of data sample(s), to jointly train a useful global model. Feature selection (FS) is important to VFL. It is still an open research problem as existing FS works designed for VFL either assumes prior knowledge on the number of noisy features or prior knowledge on the post-training threshold of useful features to be selected, making them unsuitable for practical applications. To bridge this gap, we propose the Federated Stochastic Dual-Gate based Feature Selection (FedSDG-FS) approach. It consists of a Gaussian stochastic dual-gate to efficiently approximate the probability of a feature being selected, with privacy protection through Partially Homomorphic Encryption without a trusted third-party. To reduce overhead, we propose a feature importance initialization method based on Gini impurity, which can accomplish its goals with only two parameter transmissions between the server and the clients. Extensive experiments on both synthetic and real-world datasets show that FedSDG-FS significantly outperforms existing approaches in terms of achieving accurate selection of high-quality features as well as building global models with improved performance.


翻译:垂直联邦学习(VFL)使多个数据拥有者能够拥有多个数据,每个拥有大量重叠的数据抽样组的不同特征,共同培训一个有用的全球模型。功能选择(FS)对于VFL来说很重要。它仍然是一个开放的研究问题,因为为VFL设计的现有的FS工程,要么事先掌握关于所选择的有用特征的吵杂特征的数量的知识,要么事先掌握关于培训后临界值的有用特征的知识,使其不适于实际应用。为了缩小这一差距,我们提议采用基于功能选择的基于功能选择(FedSDG-FS)的复合和现实世界特征选择(FedSDG-FS)法(FedSD-FS)法(FedSD-FS)法(FedSD-FS)法(Feds)法(FedSDSDD-FS)法(FS)法(FDS-FS-FS-FS)法(FDDS)法(FDDS)法(FDDDS-G-GS-G-FS-FSQ-FS-FSQ-FS-FSQ)法,它包括一个高萨citostochchet-SQ-SQ-SQQQ-SQ-SQ-SQ-tochchet-tochet-SQ)法的双重的双重平台,以高效的双重平台,以便有效有效,以便有效地近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近近的双重途径,以有效接近选择方法,以有效接近选择方法,通过部分选择方法,通过部分选择方法,通过部分的概率选择方法,通过部分选择方法,通过部分选择方法,通过部分选择方法,通过部分选择方法,通过部分的隐私选择方法,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分加密方法,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分加密方式,通过部分

0
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员