This paper proposes a new point-cloud convolution structure that learns SE(3)-equivariant features. Compared with existing SE(3)-equivariant networks, our design is lightweight, simple, and flexible to be incorporated into general point-cloud learning networks. We strike a balance between the complexity and capacity of our model by selecting an unconventional domain for the feature maps. We further reduce the computational load by properly discretizing $\mathbb{R}^3$ to fully leverage the rotational symmetry. Moreover, we employ a permutation layer to recover the full SE(3) group from its quotient space. Experiments show that our method achieves comparable or superior performance in various tasks while consuming much less memory and running faster than existing work. The proposed method can foster the adoption of equivariant feature learning in various practical applications based on point clouds and inspire future developments of equivariant feature learning for real-world applications.
翻译:本文提出一个新的点宽变动结构, 学习 SE(3) 等同特性。 与现有的 SE(3) 等同网络相比, 我们的设计是轻巧、简单和灵活的, 能够融入普通点宽学习网络。 我们通过为地貌地图选择一个非常规域来平衡模型的复杂性和能力。 我们进一步减少计算负载, 适当分解$\mathbb{R ⁇ 3$, 以充分利用旋转对称。 此外, 我们使用一个变换层, 将SE(3) 组从空隙中完全恢复过来。 实验显示, 我们的方法在各种任务中取得了相似或优异的成绩, 同时消耗的记忆要少得多,运行的速度要快于现有工作。 拟议的方法可以促进在基于点云的各种实用应用中采用等宽特性学习, 并激励未来在现实世界应用中进行等同特性学习的发展。