The lack of fine-grained joints (facial joints, hand fingers) is a fundamental performance bottleneck for state of the art skeleton action recognition models. Despite this bottleneck, community's efforts seem to be invested only in coming up with novel architectures. To specifically address this bottleneck, we introduce two new pose based human action datasets - NTU60-X and NTU120-X. Our datasets extend the largest existing action recognition dataset, NTU-RGBD. In addition to the 25 body joints for each skeleton as in NTU-RGBD, NTU60-X and NTU120-X dataset includes finger and facial joints, enabling a richer skeleton representation. We appropriately modify the state of the art approaches to enable training using the introduced datasets. Our results demonstrate the effectiveness of these NTU-X datasets in overcoming the aforementioned bottleneck and improve state of the art performance, overall and on previously worst performing action categories. Code and pretrained models can be found at https://github.com/skelemoa/ntu-x .


翻译:缺乏精细的关节(毛结、手手指)是状态最先进的骨骼行动识别模型的一个基本性能瓶颈。 尽管存在这种瓶颈,社区的努力似乎只投入到新结构中。 具体解决这一瓶颈问题,我们引入了两个基于人类行动的新构成数据集-NTU60-X和NTU120-X。 我们的数据集扩展了现有最大的行动识别数据集NTU-RGBD。 除了NTU-RGBD、NTU60-X和NTU120-X中每个骨骼的25个关节外,包括手指和面部关节,使得骨架代表更富有。我们适当修改艺术状态方法,以便利用引入的数据集进行培训。我们的结果表明NTU-X数据集在克服上述瓶颈和改善总体和以往表现最差的行动类别方面的效力。可在https://github.com/skelemoa/ntu-x中找到代码和预先训练模式。

0
下载
关闭预览

相关内容

专知会员服务
110+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Arxiv
3+阅读 · 2021年10月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员