This work presents an explicit-implicit procedure to compute a model predictive control (MPC) law with guarantees on recursive feasibility and asymptotic stability. The approach combines an offline-trained fully-connected neural network with an online primal active set solver. The neural network provides a control input initialization while the primal active set method ensures recursive feasibility and asymptotic stability. The neural network is trained with a primal-dual loss function, aiming to generate control sequences that are primal feasible and meet a desired level of suboptimality. Since the neural network alone does not guarantee constraint satisfaction, its output is used to warm start the primal active set method online. We demonstrate that this approach scales to large problems with thousands of optimization variables, which are challenging for current approaches. Our method achieves a 2x reduction in online inference time compared to the best method in a benchmark suite of different solver and initialization strategies.
翻译:这项工作为计算模型预测控制(MPC)法提供了一个明确的隐含程序,该程序保证了循环可行性和无症状稳定性。该方法将经过离线训练的完全连接的神经网络与在线原始活性成套求解器结合起来。神经网络提供了控制输入初始化,而原始活性成套方法则确保了循环可行性和无症状稳定性。神经网络经过初步双重损失功能的培训,目的是生成初步可行的控制序列,并达到理想的亚最佳水平。由于神经网络本身不能保证限制满意度,因此其输出被用于在网上温暖启动原始活性成套方法。我们证明,这一方法与数千个优化变量存在大问题,对当前方法具有挑战性。我们的方法实现了在线引力减少2x的时间,而不同求解决者和初始化战略基准套件中的最佳方法则减少了2x时间。