This work presents an explicit-implicit procedure to compute a model predictive control (MPC) law with guarantees on recursive feasibility and asymptotic stability. The approach combines an offline-trained fully-connected neural network with an online primal active set solver. The neural network provides a control input initialization while the primal active set method ensures recursive feasibility and asymptotic stability. The neural network is trained with a primal-dual loss function, aiming to generate control sequences that are primal feasible and meet a desired level of suboptimality. Since the neural network alone does not guarantee constraint satisfaction, its output is used to warm start the primal active set method online. We demonstrate that this approach scales to large problems with thousands of optimization variables, which are challenging for current approaches. Our method achieves a 2x reduction in online inference time compared to the best method in a benchmark suite of different solver and initialization strategies.


翻译:这项工作为计算模型预测控制(MPC)法提供了一个明确的隐含程序,该程序保证了循环可行性和无症状稳定性。该方法将经过离线训练的完全连接的神经网络与在线原始活性成套求解器结合起来。神经网络提供了控制输入初始化,而原始活性成套方法则确保了循环可行性和无症状稳定性。神经网络经过初步双重损失功能的培训,目的是生成初步可行的控制序列,并达到理想的亚最佳水平。由于神经网络本身不能保证限制满意度,因此其输出被用于在网上温暖启动原始活性成套方法。我们证明,这一方法与数千个优化变量存在大问题,对当前方法具有挑战性。我们的方法实现了在线引力减少2x的时间,而不同求解决者和初始化战略基准套件中的最佳方法则减少了2x时间。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
4+阅读 · 2017年7月25日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员