Re-planning in legged locomotion is crucial to track a given set-point while adapting to the terrain and rejecting external disturbances. In this work, we propose a real-time Nonlinear Model Predictive Control (NMPC) tailored to a legged robot for achieving dynamic locomotion on a wide variety of terrains. We introduce a mobility-based criterion to define an NMPC cost that enhances the locomotion of quadruped robots while maximizing leg mobility and staying far from kinematic limits. Our NMPC is based on the real-time iteration scheme that allows us to re-plan online at $25 \, \mathrm{Hz}$ with a time horizon of $2$ seconds. We use the single rigid body dynamic model defined in the center of mass frame that allows to increase the computational efficiency. In simulations, the NMPC is tested to traverse a set of pallets of different sizes, to walk into a V-shaped chimney, and to locomote over rough terrain. We demonstrate the effectiveness of our NMPC with the mobility feature that allowed IIT's $87.4 \,\mathrm{kg}$ quadruped robot HyQ to achieve an omni-directional walk on flat terrain, to traverse a static pallet, and to adapt to a repositioned pallet during a walk in real experiments.
翻译:重新规划脚踏踏脚的移动器,对于在适应地形和拒绝外部扰动的同时跟踪特定设定点至关重要。 在这项工作中,我们提议了一个实时的非线性模型预测控制(NMPC)实时非线性模型预测控制(NMPC),适合一个腿式机器人,以便在各种地形中实现动态移动,在广泛的地形中实现动态移动。我们引入基于流动性的标准,以界定NMPC成本,提高四重立机器人的移动速度,同时最大限度地提高腿流动性,远离动脉限制。我们的NMPC以实时循环计划为基础,使我们能够在25美元\,\mathrm{Hz}美元的时间范围内重新在线规划25美元,\mathrlem{Hz}。我们使用在质量框架中心界定的单一硬体体动态模型,以提高计算效率。在模拟中,NMPC会测试如何绕过一套不同尺寸的托盘,步行到V-平流的烟囱,并跨过粗地形。我们展示了NMPC的有效性,我们NMPC$的移动特性是允许I'IT, 85\\\\ rema to relial robal agole labal rial abal abal ama.