Deep learning has revolutionized autonomous driving by enabling vehicles to perceive and interpret their surroundings with remarkable accuracy. This progress is attributed to various deep learning models, including Mediated Perception, Behavior Reflex, and Direct Perception, each offering unique advantages and challenges in enhancing autonomous driving capabilities. However, there is a gap in research addressing integrating these approaches and understanding their relevance in diverse driving scenarios. This study introduces three distinct neural network models corresponding to Mediated Perception, Behavior Reflex, and Direct Perception approaches. We explore their significance across varying driving conditions, shedding light on the strengths and limitations of each approach. Our architecture fuses information from the base, future latent vector prediction, and auxiliary task networks, using global routing commands to select appropriate action sub-networks. We aim to provide insights into effectively utilizing diverse modeling strategies in autonomous driving by conducting experiments and evaluations. The results show that the ensemble model performs better than the individual approaches, suggesting that each modality contributes uniquely toward the performance of the overall model. Moreover, by exploring the significance of each modality, this study offers a roadmap for future research in autonomous driving, emphasizing the importance of leveraging multiple models to achieve robust performance.
翻译:暂无翻译