Implicit neural representations store videos as neural networks and have performed well for various vision tasks such as video compression and denoising. With frame index or positional index as input, implicit representations (NeRV, E-NeRV, \etc) reconstruct video from fixed and content-agnostic embeddings. Such embedding largely limits the regression capacity and internal generalization for video interpolation. In this paper, we propose a Hybrid Neural Representation for Videos (HNeRV), where a learnable encoder generates content-adaptive embeddings, which act as the decoder input. Besides the input embedding, we introduce HNeRV blocks, which ensure model parameters are evenly distributed across the entire network, such that higher layers (layers near the output) can have more capacity to store high-resolution content and video details. With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks for both reconstruction quality ($+4.7$ PSNR) and convergence speed ($16\times$ faster), and shows better internal generalization. As a simple and efficient video representation, HNeRV also shows decoding advantages for speed, flexibility, and deployment, compared to traditional codecs~(H.264, H.265) and learning-based compression methods. Finally, we explore the effectiveness of HNeRV on downstream tasks such as video compression and video inpainting. We provide project page at https://haochen-rye.github.io/HNeRV, and Code at https://github.com/haochen-rye/HNeRV


翻译:隐式神经表示以神经网络存储视频,在诸多视觉任务中表现良好,如视频压缩和降噪。使用帧索引或位置索引作为输入,隐式表示(NeRV,E-NeRV等)从固定和内容无关的嵌入中重构视频。这种嵌入在很大程度上限制了视频插值的回归能力和内部泛化。本文提出了一种基于混合神经表示的视频表征(HNeRV),其中可学习的编码器生成内容自适应嵌入,充当解码器输入。除了输入嵌入外,我们引入了HNeRV块,确保模型参数均匀分布在整个网络中,从而使更高层(接近输出层的层)可以具有存储高分辨率内容和视频细节的更大容量。通过内容自适应嵌入和重新设计的架构,HNeRV在视频回归任务中的重构质量(+4.7 PSNR)和收敛速度(16倍)方面均优于隐式方法,并显示出更好的内部泛化。作为一种简单而高效的视频表示,与传统编解码器(H.264,H.265)和基于学习的压缩方法相比,HNeRV还显示出速度、灵活性和部署方面的解码优势。最后,我们探讨了HNeRV在视频压缩和视频修补等下游任务中的有效性。我们在https://haochen-rye.github.io/HNeRV提供项目页面,在https://github.com/haochen-rye/HNeRV提供代码。

0
下载
关闭预览

相关内容

【CVPR2023】面向不同视频的可扩展神经表示,
专知会员服务
20+阅读 · 2023年3月28日
【NeurIPS2021】NeRV:视频的神经表示
专知会员服务
12+阅读 · 2021年10月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
54+阅读 · 2019年12月22日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
18+阅读 · 2021年6月10日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员