Graph neural networks (GNNs) have received massive attention in the field of machine learning on graphs. Inspired by the success of neural networks, a line of research has been conducted to train GNNs to deal with various tasks, such as node classification, graph classification, and link prediction. In this work, our task of interest is graph classification. Several GNN models have been proposed and shown great accuracy in this task. However, the question is whether usual training methods fully realize the capacity of the GNN models. In this work, we propose a two-stage training framework based on triplet loss. In the first stage, GNN is trained to map each graph to a Euclidean-space vector so that graphs of the same class are close while those of different classes are mapped far apart. Once graphs are well-separated based on labels, a classifier is trained to distinguish between different classes. This method is generic in the sense that it is compatible with any GNN model. By adapting five GNN models to our method, we demonstrate the consistent improvement in accuracy and utilization of each GNN's allocated capacity over the original training method of each model up to 5.4\% points in 12 datasets.


翻译:由于神经网络的成功,在对神经网络的成功启发下,开展了一线研究,培训GNN处理各种任务,例如节点分类、图形分类和链接预测。在这项工作中,我们感兴趣的任务是图形分类。提出了若干GNN模型,并显示了这项任务的高度准确性。然而,问题是,通常的培训方法是否完全实现GNN模型的能力。在这项工作中,我们提议了一个基于三重损失的两阶段培训框架。在第一阶段,GNN受过培训,将每个图表绘制到Euclidean-空间矢量上,以便同一类的图表接近不同类别的图表,而不同类的图表则远为不同。一旦图表以标签为基础完全分离,就训练一个GNN模型区分不同类别。这种方法是通用的,因为它与任何GNN模型相兼容。根据我们的方法调整了五个GNN模型,我们展示了每个GNN模型的精确度和使用率和每个GNN模型配置能力相对于每个模型5.4的原始模型的精确度是否一致。

1
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
134+阅读 · 2020年2月13日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
11+阅读 · 2020年7月15日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
9+阅读 · 2020年10月29日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
11+阅读 · 2020年7月15日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
9+阅读 · 2020年10月29日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员