We consider the problem of predictive monitoring (PM), i.e., predicting at runtime the satisfaction of a desired property from the current system's state. Due to its relevance for runtime safety assurance and online control, PM methods need to be efficient to enable timely interventions against predicted violations, while providing correctness guarantees. We introduce \textit{quantitative predictive monitoring (QPM)}, the first PM method to support stochastic processes and rich specifications given in Signal Temporal Logic (STL). Unlike most of the existing PM techniques that predict whether or not some property $\phi$ is satisfied, QPM provides a quantitative measure of satisfaction by predicting the quantitative (aka robust) STL semantics of $\phi$. QPM derives prediction intervals that are highly efficient to compute and with probabilistic guarantees, in that the intervals cover with arbitrary probability the STL robustness values relative to the stochastic evolution of the system. To do so, we take a machine-learning approach and leverage recent advances in conformal inference for quantile regression, thereby avoiding expensive Monte-Carlo simulations at runtime to estimate the intervals. We also show how our monitors can be combined in a compositional manner to handle composite formulas, without retraining the predictors nor sacrificing the guarantees. We demonstrate the effectiveness and scalability of QPM over a benchmark of four discrete-time stochastic processes with varying degrees of complexity.
翻译:我们考虑预测性监测(PM)的问题,即预测当前系统状态下所需财产的满意度。由于PM方法与运行时间安全保证和在线控制相关,因此,PM方法必须高效,以便能够及时干预预测的违规行为,同时提供正确性保障。我们采用Textit{QQ预测性监测(QPM)},这是第一个支持随机过程和信号时间逻辑(STL)给出的丰富规格的PM方法。与大多数预测某些财产是否满足当前系统水平的现有PM技术不同,QPM技术提供了量化的满意度,因为它对运行时间安全保证和对预测的准确性进行预测。为了做到这一点,我们采用机器学习方法并利用最新进展来预测某些财产是否满意度,从而避免昂贵的STL值STL值(aa) 美元和在线控制。QPM提供预测间隔,以便非常高效地进行兼容和具有概率保证的预测。 QMMRM(S-Car) QM) 以不昂贵的方式进行模拟的方式进行模拟,从而显示我们对模型的准确性评估。