In this paper, we propose a novel neural-based exploration strategy in contextual bandits, EE-Net, quite different from the standard UCB-based and TS-based approaches. Contextual multi-armed bandits have been studied for decades with various applications. To solve the exploitation-exploration tradeoff in bandits, there are three main techniques: epsilon-greedy, Thompson Sampling (TS), and Upper Confidence Bound (UCB). In recent literature, linear contextual bandits have adopted ridge regression to estimate the reward function and combine it with TS or UCB strategies for exploration. However, this line of works explicitly assumes the reward is based on a linear function of arm vectors, which may not be true in real-world datasets. To overcome this challenge, a series of neural-based bandit algorithms have been proposed, where a neural network is assigned to learn the underlying reward function and TS or UCB are adapted for exploration. In this paper, we propose "EE-Net", a neural-based bandit approach with a novel exploration strategy. In addition to utilizing a neural network (Exploitation network) to learn the reward function, EE-Net adopts another neural network (Exploration network) to adaptively learn potential gains compared to currently estimated reward for making explorations. Then, a decision-maker is constructed to combine the outputs from the Exploitation and Exploration networks. We prove that EE-Net can achieve $\mathcal{O}(\sqrt{T\log T})$ regret, which is tighter than existing state-of-the-art neural bandit algorithms ($\mathcal{O}(\sqrt{T}\log T)$ for both UCB-based and TS-based). Through extensive experiments on four real-world datasets, we show that EE-Net outperforms existing linear and neural bandit approaches.


翻译:在本文中, 我们提议在背景土匪、 { EE- Net 中采用新的神经勘探策略, 与标准的 UCB 和 TS- 基础方法截然不同。 几十年来, 已经对背景多武装土匪进行了各种应用研究。 要解决土匪的剥削- 探索交易, 提出了三种主要技术: epsilon- greedy, Thompson 抽样 (TS) 和 Up Infority Bound (UCBB) 。 在最近的文献中, 线性背景土匪采用了山脊回归法来估计奖励功能, 并将其与TS或 UCB的勘探战略结合起来。 但是, 这行显然假设奖励是基于武装矢量的线性功能, 而在现实世界数据集中, 可能不是这样的。 为了克服这一挑战, 已经提出了一系列基于神经基的木质测算算法, 用于学习基本的奖赏功能, TTS或UCB 。 我们在此文件中, 提议“ E- 线- Net ” 方法, 以神经基调 方法与新的勘探策略相结合。 。 除了利用一个神经网络网络网络, 将电路路路路路路路系 学习另一个的电图, 学习电算, 数据。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Budgeted Combinatorial Multi-Armed Bandits
Arxiv
0+阅读 · 2022年2月13日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
0+阅读 · 2022年2月10日
Remote Contextual Bandits
Arxiv
0+阅读 · 2022年2月10日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Budgeted Combinatorial Multi-Armed Bandits
Arxiv
0+阅读 · 2022年2月13日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
0+阅读 · 2022年2月10日
Remote Contextual Bandits
Arxiv
0+阅读 · 2022年2月10日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
10+阅读 · 2019年2月19日
Top
微信扫码咨询专知VIP会员